If you're interested in becoming a contributor or requesting changes then click here to join the discord
Difference between revisions of "Source Information Flow Toolbox"
Landonodnal (talk | contribs) (Created page with "Category:Software The Source Information Flow Toolbox (SIFT) is an GUI-enabled EEGLAB plugin for modeling and visualizing dynamical interactions between electrophysiologic...") |
Landonodnal (talk | contribs) |
||
Line 1: | Line 1: | ||
+ | [[Category:GitHub_Repos]] | ||
[[Category:Software]] | [[Category:Software]] | ||
The Source Information Flow Toolbox (SIFT) is an GUI-enabled EEGLAB plugin for modeling and visualizing dynamical interactions between electrophysiological signals (EEG, ECoG, MEG, etc), preferably after transforming signals into the source domain. The toolbox consists of four modules: (1) Data Preprocessing, (2) Model Fitting and Connectivity Estimation, (3) Statistical Analysis, (4) Visualization, with a fifth Group Analysis module in development. Module 2 currently includes several adaptive multivariate autoregressive modeling (AMVAR) algorithms, including segmentation AMVAR and Kalman filtering. This subsequently allows the user to validate the model and estimate (in the time-frequency domain) a wide range of multivariate Granger-causal and coherence measures published to date. Module 3 includes routines for parametric and non-parametric significance testing. Module 4 contains routines for interactive visualization of dynamical interactions across time, frequency and anatomical source location. | The Source Information Flow Toolbox (SIFT) is an GUI-enabled EEGLAB plugin for modeling and visualizing dynamical interactions between electrophysiological signals (EEG, ECoG, MEG, etc), preferably after transforming signals into the source domain. The toolbox consists of four modules: (1) Data Preprocessing, (2) Model Fitting and Connectivity Estimation, (3) Statistical Analysis, (4) Visualization, with a fifth Group Analysis module in development. Module 2 currently includes several adaptive multivariate autoregressive modeling (AMVAR) algorithms, including segmentation AMVAR and Kalman filtering. This subsequently allows the user to validate the model and estimate (in the time-frequency domain) a wide range of multivariate Granger-causal and coherence measures published to date. Module 3 includes routines for parametric and non-parametric significance testing. Module 4 contains routines for interactive visualization of dynamical interactions across time, frequency and anatomical source location. | ||
==Links== | ==Links== | ||
[https://github.com/sccn/SIFT GitHub] | [https://github.com/sccn/SIFT GitHub] |
Latest revision as of 19:49, 12 April 2022
The Source Information Flow Toolbox (SIFT) is an GUI-enabled EEGLAB plugin for modeling and visualizing dynamical interactions between electrophysiological signals (EEG, ECoG, MEG, etc), preferably after transforming signals into the source domain. The toolbox consists of four modules: (1) Data Preprocessing, (2) Model Fitting and Connectivity Estimation, (3) Statistical Analysis, (4) Visualization, with a fifth Group Analysis module in development. Module 2 currently includes several adaptive multivariate autoregressive modeling (AMVAR) algorithms, including segmentation AMVAR and Kalman filtering. This subsequently allows the user to validate the model and estimate (in the time-frequency domain) a wide range of multivariate Granger-causal and coherence measures published to date. Module 3 includes routines for parametric and non-parametric significance testing. Module 4 contains routines for interactive visualization of dynamical interactions across time, frequency and anatomical source location.